欧美激情一区二区三区在线-欧美激情一区二区三区在线播放-欧美激情一区二区亚洲专区-欧美激情在线播放一区二区三区-欧美激情在线观看一区二区三区


首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機器人知識 > 性能超越最新序列推薦模型,華為諾亞方舟提出記憶增強的圖神經(jīng)網(wǎng)絡(luò)  
 

性能超越最新序列推薦模型,華為諾亞方舟提出記憶增強的圖神經(jīng)網(wǎng)絡(luò)

來源:AI科技大本營      編輯:創(chuàng)澤      時間:2020/6/8      主題:其他   [加盟]

用戶-商品交互的時間順序可以揭示出推薦系統(tǒng)中用戶行為隨時間演進的序列性特征。用戶與之交互的商品可能受到用戶曾經(jīng)接觸的商品的影響。但是,用戶和商品數(shù)量的大量增加,使得序列推薦系統(tǒng)仍然面臨很多重要問題:(1)對短時用戶興趣建模的困難;(2)捕捉用戶長期興趣的困難;(3)對商品共現(xiàn)模式的建模效率較低。為了應(yīng)對這些挑戰(zhàn),本文提出了一個記憶增強的圖神經(jīng)網(wǎng)絡(luò)(memory augmented graph neural network, MA-GNN),以捕捉用戶的長期和短期興趣。

特別地,本文使用圖神經(jīng)網(wǎng)絡(luò)對短期的商品語境信息建模,并使用共享的記憶網(wǎng)絡(luò)來捕捉商品之間的長期依賴。另外,本文使用雙線性函數(shù)以捕捉相關(guān)商品的共現(xiàn)模式。在模型評估上,本文在五個真實場景的數(shù)據(jù)集上進行了評測,并使用一系列評估指標(biāo)和多個當(dāng)前效果優(yōu)的模型進行了對比。試驗結(jié)果顯示,本文模型在Top-K序列推薦中效果J佳。

介紹

隨著網(wǎng)絡(luò)服務(wù)和移動設(shè)備的快速增加,個性化推薦系統(tǒng)在現(xiàn)代社會中正扮演著越來越重要的角色。個性化推薦系統(tǒng)能夠降低信息負載、滿足多種服務(wù)需求,并至少在以下兩方面起到J大助力:(i)幫助用戶發(fā)現(xiàn)上百萬候選產(chǎn)品中的合適商品;(ii)為產(chǎn)品提供商創(chuàng)造增長營業(yè)額的機會。

在網(wǎng)絡(luò)中,用戶以線性順序訪問商品。用戶在未來查看的商品可能收到歷史瀏覽記錄的影響,這創(chuàng)造了一個具有操作性的應(yīng)用場景——序列推薦。在序列推薦任務(wù)中,除了和通用推薦系統(tǒng)一樣需要捕捉用戶的整體興趣之外,我們認為還有另外三個重要因素需要考慮:用戶短期興趣,用戶長期興趣,商品共現(xiàn)模式。用戶短期興趣描述了用戶在短期內(nèi)訪問商品的偏好。用戶長期興趣捕捉用戶之前訪問的和未來將訪問的商品之間的長期以來。商品共現(xiàn)模式則對相關(guān)商品的共現(xiàn)規(guī)律進行闡釋。

盡管目前已有很多序列推薦模型,但我們認為已有模型尚不能完整捕捉前文提到的三個因素。先,Caser, MARank, Fossil等人僅對用戶短期興趣進行了建模,忽略了商品的長期依賴關(guān)系。第二, SARSRec等類似模型沒有對用戶短期興趣進行有效的建模,使得模型難以理解用戶在短期內(nèi)的興趣變化。第三,GC-SAN,GRU4Rec++等類似模型未能明確捕捉商品序列中的商品共現(xiàn)規(guī)律。由于相關(guān)商品經(jīng)常共同出現(xiàn),推薦模型應(yīng)當(dāng)對此因素加以考量。

為將上述三個因素加入序列推薦模型,本文提出了一個記憶增強的圖神經(jīng)網(wǎng)絡(luò)(MA-GNN)。該模型包括一個整體興趣模塊,一個短期興趣模塊,一個長期興趣模塊,以及一個商品共現(xiàn)模塊。在整體興趣模塊中,我們使用矩陣分解對用戶整體興趣建模,該模塊不包含商品對序列變化信息。在短時興趣模塊中,我們使用一個GNN結(jié)構(gòu)加入商品的鄰接關(guān)系信息,以構(gòu)成用戶的短期興趣。

這一結(jié)構(gòu)能夠捕捉較短時期的情境信息和結(jié)構(gòu)。為了對用戶的長期興趣建模,我用使用一個鍵值記憶網(wǎng)絡(luò)(key-value memory network)以基于用戶的長期商品序列形成對用戶興趣的表征。通過該方法,在推薦一個商品時,其他具有相似偏好的用戶也會成為影響因素。為了綜合用戶的長期和短期興趣,我們在GNN框架中引入了門機制,和LSTM網(wǎng)絡(luò)中的門機制類似。這一機制對長時和短時興趣在模型中的貢獻度進行控制。在商品共現(xiàn)模塊中,我們使用了一個雙線性函數(shù)以捕捉商品序列中G度相關(guān)的商品。我們在五個真實世界的數(shù)據(jù)集上對模型進行了評估,并使用一系列評估指標(biāo),和多個當(dāng)前先進的模型進行了對比。試驗結(jié)果顯示了本文模型相較于其他模型在推薦效果上的提升,并展示了上述模塊的有效性。

總體而言,本文的主要共現(xiàn)為:

為了對用戶短期和長期興趣建模,提出一個記憶增強的圖神經(jīng)網(wǎng)絡(luò),以捕捉短期情境信息和長期依賴;

為了G校融合短期和長期興趣信息,提出了GNN框架中的門機制;

為對商品共現(xiàn)模式進行建模,使用雙線性函數(shù)來捕捉商品之間的特征關(guān)聯(lián);

在五個真實世界數(shù)據(jù)集上進行評估試驗,結(jié)果顯示MA-GNN的效果顯著由于已有的序列推薦模型。

相關(guān)工作

整體推薦

早期的推薦模型主要研究顯性反饋,近期研究則逐漸轉(zhuǎn)向隱性數(shù)據(jù)。使用隱性反饋的協(xié)同過濾(collaborative filtering, CF)往往被認為是一個Top-K推薦認為,該任務(wù)的目標(biāo)即為用戶推薦一個可能感興趣的商品列表。這一任務(wù)更具有實際性和挑戰(zhàn)性,且更適合真實世界的推薦場景。早期的相關(guān)工作主要使用矩陣分解技術(shù)學(xué)習(xí)用戶和商品的隱性特征,基于神經(jīng)網(wǎng)絡(luò)的方法也經(jīng)常被采用。

序列推薦

序列推薦模型將商品序列作為輸入信息。一個經(jīng)典方法是使用馬爾可夫鏈對數(shù)據(jù)建模。FPMC, TransREC都屬于此類方法。近期,受自然語言處理中序列學(xué)習(xí)的啟發(fā),學(xué)者們提出了基于(深度)神經(jīng)網(wǎng)絡(luò)的方法,包括基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)、基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)等。注意力機制、記憶網(wǎng)絡(luò)也在序列推薦模型中得到應(yīng)用。

本文和已有模型的不同之處在于,模型使用記憶增強的圖神經(jīng)網(wǎng)絡(luò)以捕捉長期和短期興趣。另外,本文加入了一個商品共現(xiàn)模塊,以對G度相關(guān)的商品建模。

問題定義

本文考量的推薦任務(wù)將序列的隱性反饋作為訓(xùn)練數(shù)據(jù)。用戶興趣通過一個用戶-商品的線性序列進行表征,公式如下:







如何創(chuàng)造可信的AI,這里有馬庫斯的11條建議

馬庫斯系統(tǒng)性地闡述了對當(dāng)前AI研究界的批判,從認識科學(xué)領(lǐng)域中針對性地給出了11條可執(zhí)行的建議

用于微創(chuàng)手術(shù)的觸覺傳感器(二)

MIS 和RMIS觸覺傳感器最常用的傳感原理是基于電氣的傳感器。這些觸覺傳感器進一步分為壓阻型、壓電型和電容型傳感器

用于微創(chuàng)手術(shù)的觸覺傳感器

應(yīng)用于MIS的觸覺傳感器主要是基于電學(xué)或光學(xué)原理開發(fā)的,應(yīng)該是小尺寸和圓柱形的,可在導(dǎo)管的管身或尖端集成

醫(yī)院候診區(qū)流感性疾病的非接觸式綜合檢測平臺

非接觸式檢測平臺FluSense由麥克風(fēng)陣列和熱成像攝像機組成,用于捕捉不同的候診室人群行為,包括咳嗽和語言活動以及候診室病人數(shù)量

大阪大學(xué)胡正濤博士(萬偉偉老師團隊)為機器人開發(fā)通用工具解決復(fù)雜變種變量的操作任務(wù)

通過機械機構(gòu)實現(xiàn)機械手到工具的動力傳遞,無需外部控制及供能,對機器人的避障路徑規(guī)劃影響極小

深度學(xué)習(xí)的可解釋性研究(三)——是誰在撩動琴弦

神經(jīng)網(wǎng)絡(luò)的敏感性分析方法可以分為變量敏感性分析、樣本敏感性分析兩種,變量敏感性分析用來檢驗輸入屬性變量對模型的影響程度,樣本敏感性分析用來研究具體樣本對模型的重要程度

深度學(xué)習(xí)的可解釋性研究(二)——不如打開箱子看一看

神經(jīng)網(wǎng)絡(luò)模型本身其實并不是一個黑箱,其黑箱性在于我們沒辦法用人類可以理解的方式理解模型的具體含義和行為

深度學(xué)習(xí)的可解釋性研究(一)— 讓模型具備說人話的能力

為決策樹模型是一個具有比較好的可解釋性的模型,以決策樹為代表的規(guī)則模型在可解釋性研究方面起到了非常關(guān)鍵的作用

不完美場景下的神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法

騰訊優(yōu)圖實驗室高級研究員Louis在分享了自適應(yīng)缺陷數(shù)據(jù),業(yè)務(wù)場景下的神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法

AI在COVID-19診斷成像中的應(yīng)用

人工智能技術(shù)支持的圖像采集可以顯著幫助掃描過程實現(xiàn)自動化,還可以重塑工作流程,最大限度地減少與患者的接觸,為成像技術(shù)人員提供最佳保護

國內(nèi)外舵機參數(shù)性能價格比較

舵機是步態(tài)服務(wù)機器人的核心零部件和成本構(gòu)成,是包含電機、傳感器、控制器、減速器等單元的機電一體化元器件

SLAM與V-SLAM特征對比

基于激 光雷達的SLAM(激光SLAM)和基于視覺的SLAM(V-SLAM)。激光SLAM目前發(fā)展比較成熟、應(yīng)用廣泛,未來多傳感器融合的SLAM 技術(shù)將逐漸成為技術(shù)趨勢,取長補短,更好地實現(xiàn)定位導(dǎo)航。
 
資料獲取
新聞資訊
== 資訊 ==
» 服務(wù)機器人兼容方面檢測:電磁兼容與協(xié)議兼
» 服務(wù)機器人可信方面檢測:數(shù)據(jù)可信、算法可
» 服務(wù)機器人可靠方面檢測:環(huán)境適應(yīng)性,無故
» AI工具深度測評與選型指南V1-5大類別
» 2025基于DeepSeek的詳細規(guī)劃智
» 以DeepSeek為代表的AI在能源行業(yè)
» 人形機器人危險類型及典型示例:機械危險、
» 服務(wù)機器人安全方面檢測:機械安全、電氣安
» 北京市人工智能賦能新型工業(yè)化行動方案20
» 服務(wù)機器人智能方面檢測:大小腦智能、 肢
» 中國人工智能視覺檢測系統(tǒng)領(lǐng)域TOP10
» 2025年中國具身智能產(chǎn)業(yè)TOP100
» 人形機器人檢測的六個核心專業(yè)維度:智能,
» 人形機器人產(chǎn)業(yè)發(fā)展現(xiàn)狀、市場前景及未來展
» 服務(wù)機器人在工業(yè)場景量化效益:能耗降低、
 
== 機器人推薦 ==
 
迎賓講解服務(wù)機器人

服務(wù)機器人(迎賓、講解、導(dǎo)診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務(wù)機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導(dǎo)引機器人  移動消毒機器人  導(dǎo)診機器人  迎賓接待機器人  前臺機器人  導(dǎo)覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導(dǎo)診機器人 
版權(quán)所有 © 創(chuàng)澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

主站蜘蛛池模板: 一区二区在线视频免费观看 | 亚洲欧美综合一区 | 欧美激情整片a级 | 午夜伦情电午夜伦情影院 | 夜色55夜色66亚洲精品网站 | 中文字幕专区高清在线观看 | 亚洲国产精品一区二区三区 | 黄色在线观看网址 | 中国孕妇疯狂xxxxbbbb | 在线国产欧美 | 色婷婷激婷婷深爱五月老司机 | 男女在线观看啪网站 | 欧美一级毛片高清视频 | 麻豆视频在线播放 | 麻豆传媒入口直接进入免费版 | 久久青青草原精品无线观看 | 国产精品va欧美精品 | 国产精品果冻传媒在线 | 在线观看免费视频黄 | 黄色大片久久 | 欧美日韩免费一区二区三区 | 成人免费体验区福利云点播 | 久久久受www免费人成 | 邪恶亚洲 | 亚洲色图第四色 | 在线黄色观看 | 国产网曝手机视频在线观看 | 亚洲午夜久久久久久91 | 高清视频黄色录像免费 | 欧美一级二级三级视频 | 久久福利青草狠狠午夜 | 播放欧亚一级特黄录像 | 欧美色图一区二区 | 手机看片在线精品观看 | 国产精品自产拍在线观看 | 国产在线麻豆一区二区 | 看久久 | 尤物国产精品福利三区 | 50岁老女人毛片一级亚洲 | 日韩国产成人精品视频人 | 高h猛烈做哭bl壮汉受小说 |